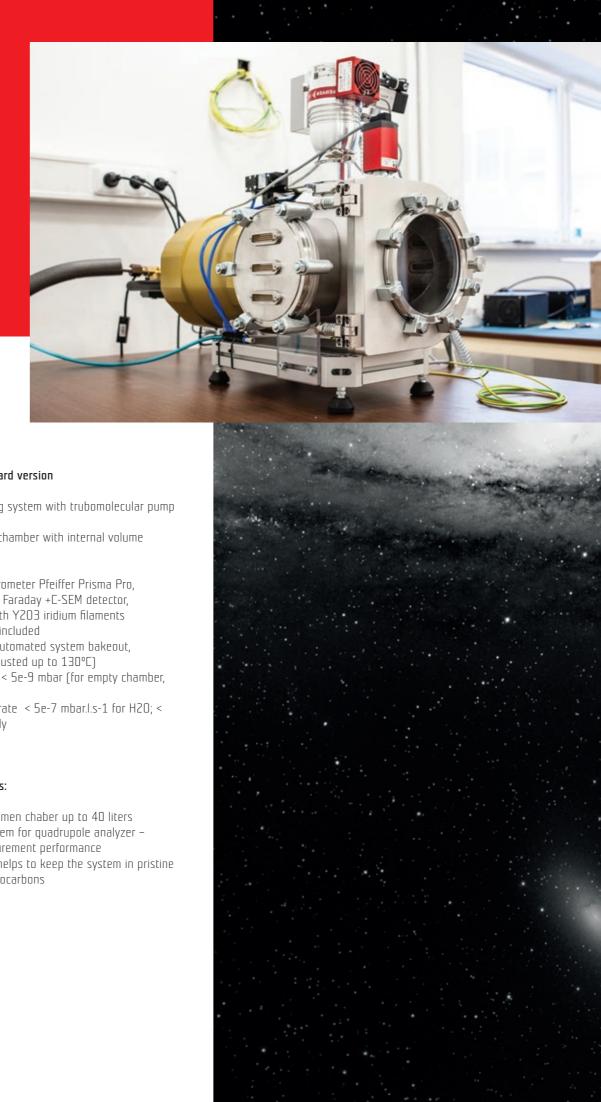


Vakuum servis s.r.o.

- Design and construction of vacuum pumping stations, vacuum furnaces, helium leak detection systems, vacuum coating systems
- Refurbishment and upgrade of vacuum production systems
- Assembly of vacuum systems as key-turn customized solutions according to individual needs
- Authorised Pfeiffer Vacuum service center

Plasma cleaning device with RGA Analysis

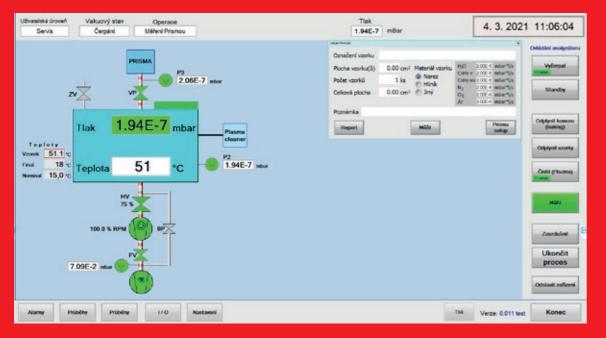
Vacuum drying system

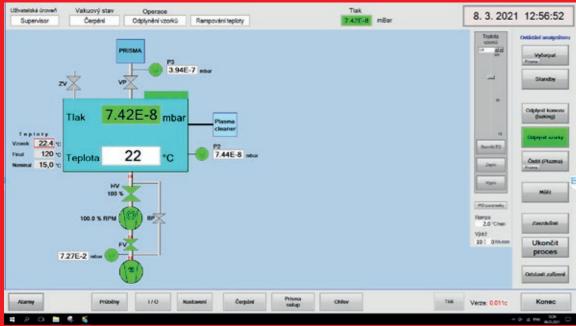

Vacuum system for E-beam high heat thermal loading

RGA 160 testing system

Main characteristics

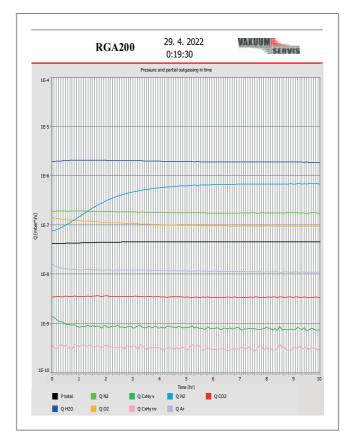
- Multipurpose testing device for RGA analysis of UHV components.
- Quantitative outgasing analysis for hydrocarbons, water vapour and other specific chemicals, based on customer needs.
- Measurement method based on ASML standard GSA 07 2221
- Dedicated control software with fully automated measurement cycle with final acceptance protocol in pdf form.
- Possibility of final plasma cleaning and vacuum bakeout of vacuum components before measurement.




Technical details — standard version

- Oil-free vacuum pumping system with trubomolecular pump and primary scroll pump
- UHV DN160 CF cubical chamber with internal volume of 7 litres
- All-metal vacuum valves
- Quadrupole mass spectrometer Pfeiffer Prisma Pro, mass range 0-200 amu, Faraday +C-SEM detector, open type ion source with Y2O3 iridium filaments
- Calibration gas mixture included
- Integrated heating for automated system bakeout, (temperature can be adjusted up to 130°C)
- Ultimate pressure up to < 5e-9 mbar (for empty chamber, after 24 hrs bakeout)
- Minimal detectable leakrate < 5e-7 mbar.l.s-1 for H2O; < 5e-10 mbar.l.s-1 for CxHy
- Footprint 850x750 mm

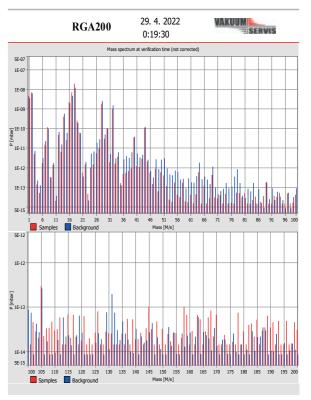
Customization possibilities:


- Enlargement of a speciemen chaber up to 40 liters
- Dedicated pumping system for quadrupole analyzer better stability of measurement performance
- Plasma cleaning unit helps to keep the system in pristine condition free from hydrocarbons

	RGA200	29. 4. 2022 0:19:30	VAKU	SERVIS
Batch infor	mation			
Marked as: Tes	st vak			
Note: pre	d testem peaky prito	mne, perioda cca 50m	in	
Quantity:	1 pcs			
Surface 1 pc:	0 cm ²			
Total Surface:	0.00 cm ²			
Device info	rmation			
OMG 250 PRISMA	PRO			
Serial number of		9302		
Serial number of		9276	Pump speed:	95 //s
			r amp opecar	
RESULT SU	IMMARY			
Sample(s) ana	alyze			
Start Pump	27.4. 2022, 9:28		ICtot:	1.52E-8 A
Start RGA time:	28.4. 2022, 14:23		Ptot:	4.46E-8 mbar
Qualification time	29.4. 2022, 0:19	(9:55)	Ptot / ICtot:	2,9 mbar/A
Report: Test vak	peaku_prazd-2022_(04_28-14:23	EM Voltage:	1320 V
			Temperature:	25,5 °C
Background in	formation			
Start Pump	2.3. 2022, 6:45		ICtot:	1.99E-8 A
Start RGA time:	2.3. 2022, 7:00		Ptot:	3.44E-8 mbar
Qualification time	2.3. 2022, 16:58	(9:57)	Ptot / ICtot:	1,7 mbar/A
			EM Voltage:	1320 V
			Temperature:	25,6 °C

		RGA200		29. 4. 20 0:19:30	22	VAKUUM	SERVIS	
Outgas	Values							
	Qmeasured [mbar*l/s]	Qbackground [mbar*l/s]	Qbatch [mbar*l/s]	Qspec [mbar*l/s]	Acceptance factor *)	Qbatch/A [mbar*l/(s*cm)]	t spec [h:mm]	t LDL [h:mm]
H ₂ O	1.85E-6	1.18E-6	1.18E-6	🖌 2.00E-6	0.59	Inf	31:28	29:09
CxHy v	7.32E-10	2.31E-9	2.31E-9	2.00E-6 🖌	< 0.01	Inf	29:09	29:09
CxHy nv	3.28E-10	2.32E-10	2.32E-10	X 0.00E+0	****.**	Inf	-	29:09
N ₂	1.72E-7	2.35E-7	2.35E-7	V 2.00E-6	0.12	Inf	29:09	29:09
02	9.35E-8	1.45E-7	1.45E-7	×0.00E+0	****.**	Inf	-	29:09
Ar	1.08E-8	1.09E-8	1.09E-8	X 0.00E+0	**** **	Inf	-	29:09

A factor 2 out of specification is accepted to avoid 'false Negative' conclusions


ICtot	Sum of Ion Current in the RGA
Ptot	Total Pressure within the Chamber

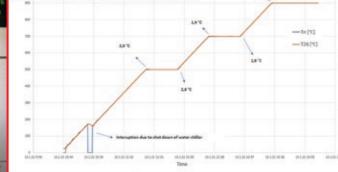
EM Electron Multiplier

	Liccolon maiop
Q	Outgas rate

t spec The time between the start of the pump down and the third outgas value in a row lower then the specification value t LDL The time between the start of the pump down and the third outgas value in a row lower then the LDL value LDL Low Detection Limit is two times of background level

Industrial UHV degassing furnace VSF450

Professional heat treatment of materials for semiconductor industry


- High quality UHV degassing system developed for Pfeiffer Vacuum Austria
- Ultra purity of your materials after degassing
- Suitable for heat treatment of different materials in UHV up to 1300°C (degassing, vacuum soldering, annealing, etc.)
- Ultimate vacuum in heated chamber dia 450×600 mm better then $8 \cdot 10^{\cdot 8}$ mbar
- Pfeiffer Vacuum Oil-free pumping system with Scroll and Turbomolecular pump
- Molybdenium heating system designed by Plansee
- Achieved temperature setpoint precision 2°C
- Configurable up to 3 heating zones
- Siemens Simatic control system with touch screen
- Fully configurable system (dimensions, parameters, etc.)

UHV degassing furnace VSF450

Achieved vacuum

nts and stability up to 900°C VP450-3 sn003

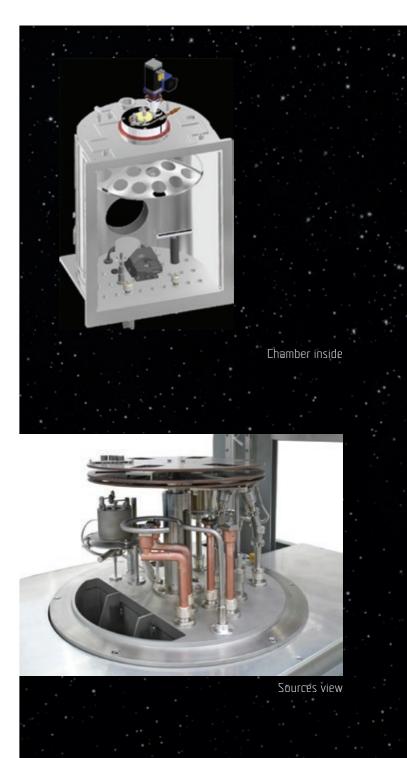
Model of system

Vakuum Servis VSS Classic series

- Universal Customized High Vacuum Evaporation and Sputtering System with flexible technology for Production Research and Development
- Continuous developement of proven Pfeiffer Vacuum Classic system series

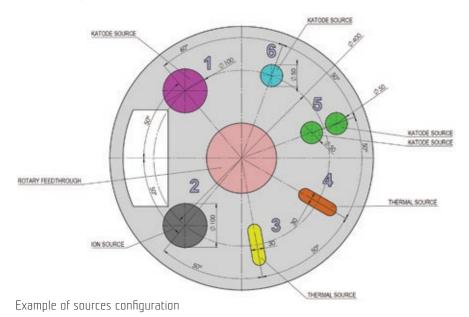
- Multi-purpose coating system for general vacuum experiments in the development field, and small-series production
- Heatable Stainless steel chambers with volumes from 35 to 13001, inner diameter 250 to 600 mm (other on request), bell jar also possible
- Evaporation and Sputtering from both sides (tilting of sample)
- Various pumping stations available (Turbo-, cryo- or oil diffusion pumps)
- Final pressures < $5 \cdot 10^{-7}$ mbar Integral leak rate < $1 \cdot 10^{-5}$ mbar I/s

Available Sources:


- Resistance evaporators (2 6 kVA)
- Electron beam evaporators (3 15 kW) with single- or multi-pocket crucible
- Ion beam sources (IAD)
- RF and DC sputter cathodes (0.3 10 kW) 2" or 4"

UHV furnace model HVF 4560

VSS Classic 580


Evaporation:

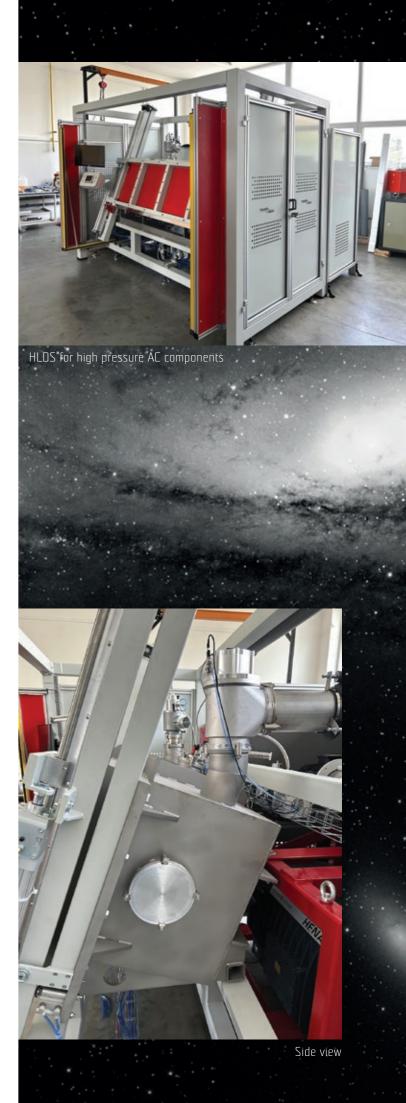
Anti-reflective process, Scratch resistant process, Laser mirrors, Contact metalization, Deposition of alloys (Co-evaporation)

Sputtering:

Suitable for layers: Metal layers (Au, Cu, Al, Cr,...), Dielectric layers (SiO2, Al2O3, ...) Transparent, conductive layers (ITO) Magnetic layers Deposition of alloys (co-sputtering)

Various pumping stations available (Turbo-, cryo- or oil diffusion pumps) Vacuum chambers coolable and heatable Final pressures < 5 · 10⁻⁷mbar Integral leak rate < 1 · 10⁻⁵ mbar I/s

Control system:


- PLC and industrial PC with visualisation under Windows, Remote acces, Connection to MES
- Fully automatic process control with imple management of recipes
- Detailed data logging (alarm and process archive + trending)

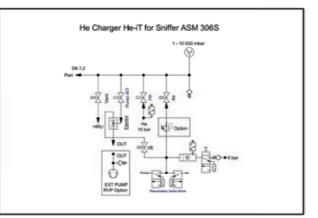
Helium Leak Detection Systems by Vakuum Servis

- State-of-the-art HLDS for automotive and HVAC customers.
- 30 years of experience with HLDS
- High sensitivity in detecting of smallest leaks
 Equipped with Pfeiffer Vacuum Leak detectors ASM 340, ASI35, ASM 306 etc.
- Fully or semi automated solution, production line . integration, high cycle time
- Integral vacuum test, Bombing test, Sniffing test

Visualisation and chamber inside

Parallel HLDS configuration for Valve leak testing

Backside view

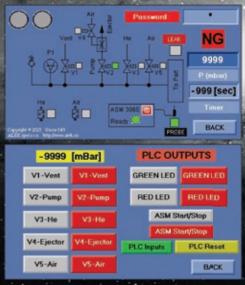


SNIFFING SET – ASM 306S & He CHARGER He-iT

He-It Helium charger

Helium charger for Pfeiffer Vacuum ASM 306S helium leak detector...

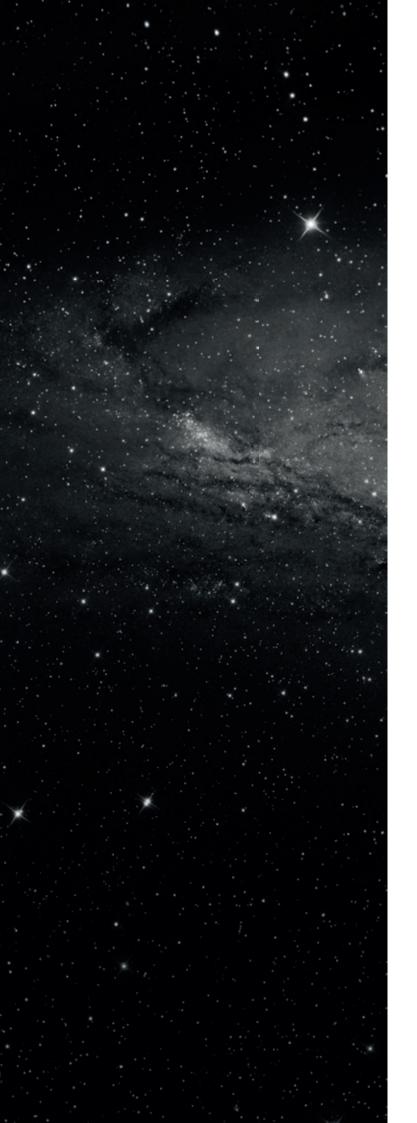
He CHARGER He-iT – Smart and Easy Solution for He Sniffing Automatic Helium charging and discharging of the part / ASM monitoring.


START/STOP Button & 4,3" HMI Touch Panel

Integration into Robotic line

Typical apllications: airbag detonators testing, air conditioning and fuel system components, valves, etc.

• Selected customers: Hanon, Kayaku Safety system, Bosch, Honeywell, Danfoss, TI Automotive, Carrier, Kendrion, Stant



Examples of HMI panel software menu

Parameters:

ASM Monitoring: State / Leak / Warning / Error Sniffer Probe Monitoring Gross-Leak Test Adjustable Testing time/Leak delay

office@vakuum-servis.cz www.vakuum-servis.cz